Ad Journal of Global Optimization 27: 83-96, 2003. 83
BN © 2003 Kiuwer Academic Publishers. Printed in the Netherlands.

Studying the Complexity of Global Verification for
NP-Hard Discrete Optimization Problems

DEREK E. ARMSTRONG! and SHELDON H. JACOBSON*

1alphatech, Inc., 3811 North Fairfax Drive, Arlington, VA 22203, USA; 2Department of
Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, 1L
61801-2906, USA (e-mail: shj@uiuc.edu)

(Received 2 July 2001; accepted in received form 16 February 2003)

Abstract. This paper examines the complexity of global verification for MAX-SAT, MAX-k-SAT
(for k=3), Vertex Cover, and Traveling Salesman Problem. These results are obtained by adaptations
of the transformations that prove such problems to be NP-complete. The class of problems PGS is
defined to be those discrete optimization problems for which there exists a polynomial time algorithm
such that given any solution w, either a solution can be found with a better objective function value or
it can be concluded that no such solution exists and w is a global optimum. This paper demonstrates
that if any one of MAX-SAT, MAX-k-SAT (for k>3), Vertex Cover, or Traveling Salesman Problem
are in PGS, then P=NP.

Subject classification: analysis of algorithms, computational complexity, networks/graphs, traveling
salesman

Key words. computational complexity; discrete optimization problems; local search algorithms; NP-
hard

1. Introduction

Discrete optimization problems in the set PGS are those problems for which there
exists a polynomial time algorithm such that given a solution « of an instance
I, the algorithm either returns a solution »’ with better objective function value
or else concludes that w is a global optimum (Jacobson and Solow, 1993). Let
P denote the set of search problems that can be solved in polynomial time. An
interesting, unresolved question to ask is whether Py = PGS? The research in this
paper examines this question and provides evidence to support (though not prove)
that this equality does indeed hold. A necessary condition for a problem to be in
PGS is that global verification of any solution can be accomplished in polynomial
time. This paper provides evidence that Py and PGS are (in some sense) close
by showing that for many NP-hard optimization problems, global verification is
an NP-complete decision problem. Jacobson and Solow (1993) show that if there
exists a PGS problem that is NP-hard, then NP = co-NP. One goal of this research is
to extend this result by showing that if there exists a PGS problem that is NP-hard,
then P = NP. This paper provides a step in this direction since if it can be shown

84 DEREK E. ARMSTRONG AND SHELDON H. JACOBSON

that the global verification problem for every NP-hard optimization problem is NP-
complete, then it is true that the existence of a PGS problem that is NP-hard implies
that P = NP.

There has been a limited amount of research reported in the literature on the
PGS versus Pg question and the global verification problem. Schulz et al. (1995)
and Grotschel and Lovasz (1995) show that problems formulated as 0-1 Integer
Programming Problems (with no restrictions on the objective function coefficients)
are solvable in polynomial time if and only they are in PGS. Schulz and Weismantel
(1999) also show similar results for general integer programming problems for
which the independent variables are bounded by a constant. Papadimitriou and
Steilglitz (1977) examine the complexity of global verification for the Traveling
Salesman Problem (TSP) by showing that global verification for the TSP is NP-
complete. They obtain this result by proving a particular subclass of Hamiltonian
Circuit to be NP-complete and then polynomially transform this problem to the
global verification problem of TSP. This paper extends these results by also show-
ing that global verification for MAX-SAT, MAX-k-SAT (for k> 2), and Vertex
Cover are all NP-complete. This paper also provides an alternative proof of the
result that global verification for TSP is NP-complete. Furthermore, global veri-
fication for TSP is shown to be NP-complete by using a similar method used
to show that the TSP decision problem is NP-complete (as given in Garey and
Johnson, 1979). Therefore, the proof presented here to demonstrate that global
verification for TSP is NP-complete is a simplification of the proof presented in
Papadimitriou and Steilglitz (1977). To obtain all these results, the global verific-
ation problem for MAX-SAT is first shown to be NP-complete. The other global
verification problems are then shown to be NP-complete by transforming the cor-
responding global verification problems in a similar manner as the original prob-
lems were transformed (as described in Garey and Johnson, 1979). For example,
the global verification of MAX-3-SAT is proven to be NP-complete by showing
the global verification of MAX-SAT polynomially transforms to the global verific-
ation problem of MAX-3-SAT, where this transformation is an adaptation of the
transformation from SAT to 3-SAT (as described in Garey and Johnson, 1979).

Other related results in the literature include the introduction of the class of
problems PLS (Johnson et al., 1988) along with the investigation of the complexity
of finding local optima for discrete optimization problems. The class of problems
PLS contains all local search problems (discrete optimization problems with a
neighborhood function) in which local optimality can be verified in polynomial
time. Fischer et al. (1997) discuss witness-isomorphic reductions and demonstrate
how they can be used to preserve the length of augmenting paths between local
search problems. An augmenting path for a local search algorithm is a sequence of
solutions such that each solution in the sequence has better objective function value
than the preceding solution and is in the neighborhood of the preceding solution.
These witness-isomorphic reductions show how a local search algorithm for an
NP-hard optimization problem can also be used to address other NP-hard optimiz-

GLOBAL VERIFICATION FOR NP-HARD DISCRETE OPTIMIZATION PROBLEMS 85

ation problems (via a witness-isomorphic reduction). Jacobson and Solow (1993)
introduce the class of problems PGS and investigate finite improvement algorithms
within this class. Finite improvement algorithms are iterative algorithms that ter-
minate in a finite number of iterations, where each such iteration is performed
in polynomial time and strict improvement is required from iteration to iteration.
Note that PGS and PLS are equivalent in that any problem IT in PGS or PLS can
be reformulated (in polynomial time in the length of problem instances of IT) as an
equivalent problem in the other class.

The paper is organized as follows: Section 2 provides formal definitions and
background material needed to obtain the global verification results presented in
Section 3. The class of problems PGS and optimization problems MAX-k-SAT
(for k > 2), TSP, Vertex Cover, and Hamiltonian Circuit are all formally defined
in Section 2. Section 3 shows that global verification for MAX-SAT, MAX-k-SAT
(for k > 2), Vertex Cover, and the TSP are all NP-complete. Section 4 provides
concluding comments and directions for future research.

2. Déefinitionsand Background

Several definitions are needed to describe the results presented. A discrete optim-
ization problem IT with instances denoted by (2, f) is formulated to find a solution
w € 2 that minimizes or maximizes f, where € is the (countable) solution space
and f: @ — Ris the objective function. For every instance (€2, f) of an optimization
problem I1, a neighborhood function n : 2 — 2% maps each solution w € into
a subset of the solution space. For a minimization problem, a solution w € Q is a
(strict) local optimum if f(w) (<) < f(w) for all v € n (), and a solution w € Q
is a global optimum if f(w) < f(w) for all € Q. Similarly, for a maximization
problem, a solution w € Q2 is a (strict) local optimumiif f(w) (>) > f(w) for all w €
n(w), and a solution w € 2 is a global optimum if f(w) > f(w) for all w € Q.

To define the concept of polynomial-time solvability of a discrete optimization
problem, several definitions are needed (for additional details, see Garey and John-
son, 1979). A deterministic Turing machine (DTM) is a model of a computer that
is used to formally define the class of problems P. A discrete optimization problem
IT can be defined as a relation R over {0, 1}* x {0, 1}* by having (x, y) € Rif and
only if y is the optimal solution to the instance x of I1. Given (X, y) € R, the strings
of bits xand y are used to represent the instance (€2, f) of IT and an optimal solution
of (L2, f), respectively. A function h:{0, 1}* — {0, 1}* realizes the string relation
R if and only if for each instance x of I, h(x) equals ye {0,1*} such that (x, y) €
R. The relation R (or optimization problem IT) is solvable in polynomial-time if
there exists a polynomial-time DTM program M such that h,, realizes R. Let Py
denote the set of all discrete optimization problems that are solvable in polynomial-
time. Note that this definition is equivalent to the definition of the class of search
problems given in Johnson et al. (1988).

86 DEREK E. ARMSTRONG AND SHELDON H. JACOBSON

From Jacobson and Solow (1993), a polynomial-time global search (PGS) prob-
lem IT is an optimization problem for which the following three polynomial time
algorithms exist:

1. Algorithm Ap, given an instance (€2, f), produces a solution w € .
2. Algorithm B, given an instance (€2, f) and a solution w € €2, computes f(w).

3. Algorithm Cp, given an instance (€2, f) and a solution w € €2, either outputs a
new solution o’ € with f(o") < f(w) (assuming a minimization problem) or
else concludes that no such solution exists and w is a global optimum.

The first algorithm Ap ensures that given any instance (€2, f), a solution can be
produced in polynomial time. The second algorithm B ensures that the objective
function can be computed in polynomial time. The third algorithm Cp provides a
procedure such that given any solution w, the algorithm either finds a better solution
or concludes that no such solution exists and w is a global optimum. Therefore, the
third algorithm Cp is equivalent to the existence of a neighborhood function that
can be searched in polynomial time and results in all the local optima being global
optima.

Several decision problems can be defined from a particular optimization prob-
lem. For an optimization problem IT, let T1(D) be the decision problem:

Given an instance (€2, f) of IT and a real number K, does there exist a solution
w € Q such that f(w)<K?

Given an optimization (minimization) problem IT with a corresponding solution
w € , the global verification decision problem I1(GV) can be defined:

Given an instance (€2, f) of IT and a solution w € €2, does there exist a solution
' € Q such that f(w') < f(w)?

For example, MAX-3-SAT(GV) denotes the global verification decision problem
associated with the MAX-3-SAT optimization problem.

This paper shows that the global verification problem is NP-complete for sev-
eral well-known discrete optimization problems, namely MAX-SAT, MAX-k-SAT
(k>=2), Vertex Cover, and the TSP. These discrete optimization problems are now
formally defined. To define MAX-k-SAT, the following terminology and notation
are needed. A Boolean variable is a variable that takes on only one of two values,
true or false. Given a collection of Boolean variables X = {x1, x5, ..., x,}, for
each x € X, define x and X to be literals of X, where the literal x (X) is true (true)
if and only if the variable x is set to true (false). For simplification, throughout
the remainder of this paper, let zero (0) denote false and one (1) denote true. A
clause is a collection of literals of X. For example, if X = {x1, x2, x3, x4, x5}, then
(X2, X4, Xs5) Is a clause. A clause is satisfied if any of the literals it contains is true.
MAX-k-SAT (for k > 1) is now formally defined.

GLOBAL VERIFICATION FOR NP-HARD DISCRETE OPTIMIZATION PROBLEMS 87

M AX-k-SAT: Given mclauses, where each clause consists of k literals, over the set
of Boolean variables X = {x1, x2, ... , x,,}, find a truth assignment t: X — {0, 1}
that maximizes the number of satisfied clauses.

MAX-k-SAT has a polynomial number of distinct objective function values (i.e.,
integer values between 0 and m). This property can be used to show that MAX-k-
SAT is polynomially solvable if and only if MAX-k-SAT is in PGS. Note that
MAX-SAT is the same as MAX-k-SAT, except that any two clauses for MAX-SAT
may have a different number of literals.

The TSP, Hamiltonian Circuit, and Vertex Cover are all formally defined as
optimization problems. Note that the global verification problem for each of these
problems is well-defined.

Traveling Salesman Problem (T SP): Given a collection of ncities {x1, x2, ... , x,}
and distances d(x;, x;) for each pair of distinct cities x; and x;, find a Hamiltonian
circuit (i.e., a permutation of the n cities y1y, ... y,) with minimum total length

n—1
<d(y1,)+ d(yi, yi+1)> :

i=1

Hamiltonian Circuit: Let G = (V, E) be a graph, where |V| = n. Find an ordering
of the vertices {vq, vy, ..., v,} such that (v;, v;y;1) e Eforalli =1,2,...,p —
1, (v,, v1) € E, and p is maximized.

Vertex Cover: Let G = (V, E) be a graph. Find a subset V' C V, with the fewest
number of vertices, such that for each edge (u, v) € E, eitherue V' orv € V'.

3. Polynomial Transformationsthat Preserve the PGS Property

This section shows that the global verification decision problem for several NP-
hard discrete optimization problems is NP-complete. An implication of this result
is that if one of these problems is in PGS, then P = NP.

Theorem 1 shows the problem of determining if there exists a truth assignment
that satisfies all of the clauses, when there is a truth assignment that satisfies all
but | clauses (i.e., a special case of MAX-SAT(GV)), is NP-complete. This special
case is referred to as MAX-SAT(GV,). Note that MAX-k-SAT(GV, I) is defined in
a similar way, where the only difference is that all the clauses have k literals. The
result in Theorem 1 implies that the global verification problem for MAX-SAT is
NP-complete, hence if MAX-SAT is in PGS, then P = NP.

MAX-SAT(GV, I): Given mclauses over the set of Boolean variables {X = x1, x2,
., X,} and a truth assignment 7 : X — {0, 1} that satisfies m — [clauses, does
there exist a truth assignment that satisfies all m clauses?

THEOREM 1. MAX-SAT(GV, I) is NP-complete for all | > 1.

88 DEREK E. ARMSTRONG AND SHELDON H. JACOBSON

Proof. Let / > 1. This results is obtained by showing that SAT polynomi-
ally transforms to MAX-SAT(GV,I). First, it is straightforward to see that MAX-
SAT(GV,I) is in NP. Let C be a set of m clauses over a set X = {x1, xp, ..., x,}
of n Boolean variables; this defines an instance of SAT. An instance of MAX-
SAT(GV, I) can be constructed with the property that it is satisfiable if and only
if C is satisfiable. To see this, let = C = {(y1, Y2, - -+, Vs Xnt1s Xng2s - -« s Xt)):
(¥1, ¥2, ..., yx) € C}. The instance of MAX-SAT(GV, |) is given by the set of
clauses C' = C U {Xni1, (Kng2), ..., (Xns1)}, set of Boolean variables X' =
X U {x,41, Xna2, ..., Xy}, and the truth assignment ¢ : X’ — {0, 1}, where
t'(x;) =0foralli =1,2,... ,nand ¢’ (x,41) = 1foralli =1,2,...,[. Note that
this instance of MAX-SAT(GV, I) is constructed in polynomial time in the length
of the SAT instance. By design, the truth assignment ¢' does not satisfy exactly |
clauses of C'. To complete the proof, it is necessary to show that C’ is satisfiable if
and only if C is satisfiable. Suppose C is satisfiable and r : X — {0, 1} is a truth
assignment that satisfies all the clauses of C. Then, it is straightforward to see that
the truth assignment ¢* : X’ — {0, 1} defined by #*(x) = ¢(x) for all x € X, and
t*(x) = O0forall x € X’ — X, satisfies all the clauses of C’. Now, suppose C’ is
satisfiable and r : X’ — {0, 1} satisfies all the clauses of C’. Since C’ is satisfiable
by ¢, it then follows that ¢ (x) =0 forall x € X’ — X, and t* : X — {0, 1}, where
t*(x) = t(x) for all x € X, satisfies all the clauses in C. This implies that SAT
polynomially transforms to MAX-SAT(GV, I).

Cook (1971) proved that SAT was NP-complete, hence established the first
decision problem to be NP-complete. After SAT was shown to be NP-complete,
other decision problems IT could be shown to be NP-complete by polynomially
transforming SAT to IT. In a similar fashion, the work presented here first shows
that the global verification problem of MAX-SAT is NP-complete. Given this res-
ult, other global verification problems IT1(GV) could be shown to be NP-complete
by polynomially transforming MAX-SAT(GV) to T1(GV). O

Theorem 2 shows that the global verification problem for MAX-3-SAT is also
NP-complete. The polynomial transformation used in the proof of Theorem 2 is the
same transformation to show SAT polynomially reduces to 3-SAT (as described in
Garey and Johnson, 1979), except for changes that are needed to transform a truth
assignment of SAT to a truth assignment of 3-SAT.

THEOREM 2. MAX-3-SAT(GV, I) is NP-complete for all | > 1.

Proof. Let [> 1. First, it is straightforward to see that MAX-3-SAT(GV, |) is in
NP. The proof follows by showing that MAX-SAT(GV, |) polynomially transforms
to MAX-3-SAT(GV, I). Let C = {c1, co, ... , ¢y} be a set of m clauses over a set
X = {x1, x2, ..., x,} of nBoolean variables and r : X — {0, 1} be a truth assign-
ment that satisfies all but | clauses; this defines an instance of MAX-SAT(GV,I).
A set of clauses C’, where each clause in C’ has exactly three literals over a set
X' of Boolean variables, and a truth assignment ¢’ : X’ — {0, 1} that satisfies all

GLOBAL VERIFICATION FOR NP-HARD DISCRETE OPTIMIZATION PROBLEMS 89

but | clauses of C’ can be constructed such that C is satisfiable if and only if C’
is satisfiable. For each clause in C, additional variables and clauses are needed to
construct the sets C’' and X'. Let ¢; = (y1, y2, ..., yx) € C be a clause. Consider
the following four cases based on the size of k.

Casel: k=1. Let Xj = {wl’j, wz’j} and Cj = {0, wi, j, wz’j), (1, u_)]_’j, wz’j),
(y1, wy,j, Wz j), (y1, Wy j, Wz, j)}.

Case2: k=2 Let X; = {wy ;} and C; = {(y1, y2, w1,;), (y1, y2, w1, j)}.

Case3: k=3.Let X; =¢ and C; = {(c)}.

Case4: k> 3. LetX; ={w;; :1<i <k—3}and
C; = {0, y2, wi PYU{(Wi s Yiga, wigaj) i =1,2,... k—4}
U{wi—3,j» Yk-1, Y }-

Let
c'=Jciandx' =xu || JXx;].
j=1 j=1

A truth assignment ¢ : X — {0, 1} is defined that satisfies all but | clauses of C'.

Foreach x € X, sett'(x) =t(x). Letc; = (y1, y2, ...,) € C (where k > 3) be
a clause that is not satisfied by 7. By setting ¢'(x) = 1, for each x € X, it follows
that ¢ satisfies all but one clause of C;. Now, let ¢; = (y1, y2, ...,) € C (where

k > 3) be a clause that is satisfied by z. Let p be the smallest integer such that
the literal y, is satisfied by ¢. The following rules are used to define #'(x) for all
X € Xj:

(LDif p=1or2, thent'(w; ;) =0foralli =1,2,... .k —3,

(@if p=k—1ork, thent'(w; ;) =1foralli =1,2,... ,k—3,

Q)if2<p<k—1, thent'(w; ;) =1foralli =1,2,...,p—2, and
t'(w;,;)=0foralli=p—1,p,... . k—3.

Therefore, ¢’ satisfies all clauses in C;. Finally, for each j suchthatc; = (y1, y2, ...,
yi), Where k& < 3, set #'(x) = 1 forall x € X;. In this case, if ¢ satisfies c;,
then ¢ satisfies all the clauses in C;. Moreover, if t does not satisfy c;, then t/
satisfies all but one clause of C;. By construction, the truth assignment ¢’ satisfies
all but [clauses of C'. Lastly, C is satisfiable if and only if C’ is satisfiable (Garey
and Johnson, 1979). Note that the constructions of C’, X’, and ¢’ are all obtained
in a polynomial number of steps in the length of instances of MAX-SAT(GV, I).
Therefore, MAX-3-SAT(GV, I) is NP-complete. a

Theorem 3 extends the result in Theorem 2 to show that MAX-k-SAT(GV, I)
is NP-complete for all k>3. MAX-2-SAT(GV,!) is polynomially solvable for all
I>1 since 2-SAT is polynomially solvable (Aspvall et al., 1979). However, the

90 DEREK E. ARMSTRONG AND SHELDON H. JACOBSON

optimization problem MAX-2-SAT is NP-hard. Theorem 4 proves that MAX-2-
SAT(GV) is NP-complete.

THEOREM 3. MAX-k-SAT(GV, I) is NP-complete for all k>3 for all 1>1.

Proof. The proof is by induction on k. Let / > 1. The base case (k = 3) follows
from Theorem 2. Suppose MAX-k-SAT(GV,) is NP-complete for some k£ > 3. It
will be shown that MAX-k+1-SAT(GV, I) is NP-complete. Let C = {c1, ¢cp, ... , Cm}
be a set of m clauses over the set X = {x1, xy, ..., x,} of n Boolean variables,
and let ¢ : X — {0, 1} be a truth assignment that satisfies all but | clauses. This
defines an instance of MAX-k-SAT(GV, I). For each ¢; = (y1, y2, ..., ») € C, let
X;={w;}and C; = {(y1, y2, - » yk» w;}), V1, y2, .- » Yk, wj)}. Let

C/=0CjandX/=XU OX]
j=1 j=1

Define ¢/ : X’ — {0,1} by #/(x) = t(x) forall x € X, and ¢'(x) = 1, for
all x € X' — X. If t satisfies clause c;, then ¢’ satisfies both clauses in C;. If t
does not satisfy clause c;, then ¢’ satisfies only one clause in C;. Since t satis-
fies all but | clauses of C, it then follows that ¢’ satisfies all but | clauses of C'.
Therefore, C’, X/, and ¢’ define an instance of MAX-k+1-SAT(GV, |) that can be
constructed in polynomial time (in the length of instances of MAX-k-SAT(GV,
). By their definition, C is satisfiable if and only if C’ is satisfiable. Therefore,
MAX-k-SAT(GV, |) polynomially transforms to MAX-k+1-SAT(GV, 1), hence by
induction, MAX-k-SAT(GV, I) is NP-complete for all £ > 3. a

The proof of Theorem 4 follows from an extension of the transformation from
3-SAT to MAX-2-SAT(D) given in Garey et al. (1976).

THEOREM 4. MAX-2-SAT(GV) is NP-complete.

Proof. First, it is straightforward to see that MAX-2-SAT(GV) is in NP. The
proof follows by showing that MAX-3-SAT(GV, 1) polynomially transforms to
MAX-2-SAT(GV). Let C ={c1, ¢z, ... , ¢y} be aset of mclauses over the set X =
{x1, x2, ..., x,} of nBoolean variablesand letr : X — {0, 1} be atruth assignment
that satisfies all but one clause; this defines an instance of MAX-3-SAT(GV, 1). Let
X'=XUla;, bi,ci,di, p; i =1,2,...,m}. Foreach clause c; = (y1, y2, y3) €
C letC; = {(y1, aj), (y1.a;), (y2,), (v2,b;), (y3, ¢;), (¥3, ¢;), (Y1, ¥2), (V2, ¥3),
(1, ¥3), (V1. dj), (02, d;), (y3,d}), (d;, pj), (d}, pj)}. Itis straightforward to verify
that if clause c; is satisfied, then exactly 11 clauses in C’; can be satisfied. If the
clause c; is not satisfied, then exactly 10 clauses in C’; can be satisfied. Let

C'= OC;
j=1

GLOBAL VERIFICATION FOR NP-HARD DISCRETE OPTIMIZATION PROBLEMS 91

Then there exists a truth assignment that satisfies exactly 11m or more clauses of
C’ if and only if C is satisfied. It is straightforward to use the truth assignment t
to construct a truth assignment ¢’ : X’ — {0, 1} that satisfies 11m—1 clauses of
C’. Therefore, MAX-3-SAT(GV, 1) polynomially transforms to MAX-2-SAT(GV)
and by Theorem 2, it follows that MAX-2-SAT(GV) is NP-complete. O

Theorem 5 shows how the polynomial transformation from 3-SAT to Vertex
Cover (Garey and Johnson, 1979) can be used to show that MAX-3-SAT(GV, I)
polynomially reduces to a global verification problem version of Vertex Cover.

Vertex Cover (GV, I): Let G = (V, E) be a graph and m, | be positive integers. Let
V'’ be a vertex cover for G that contains m + [vertices, does G have a vertex cover
with mor fewer vertices?

THEOREM 5. Vertex Cover(GV, I) is NP-complete for all / > 1.

Proof. Let / > 1. Clearly, Vertex Cover(GV, I) is in NP. The proof follows by
showing that MAX-3-SAT(GV, I) polynomially transforms to Vertex Cover(GV, I).
LetC = {c1, ¢, ..., ¢y} be aset of mclauses over the set X = {x1, xp, ... , x,,} of
n Boolean variables and ¢ : X — {0, 1} be a truth assignment that satisfies all but
| clauses; this defines an instance of MAX-3-SAT(GV,|) that can be polynomially
transformed to an instance of Vertex Cover(GV, |). To see thus, the set of clauses
C and Boolean variables X are transformed in the same manner used to prove that
3-SAT polynomially transforms to Vertex Cover (Garey and Johnson, 1979). The
truth assignment t is then transformed to a vertex cover of the corresponding graph.
For each variable x; € X, letV; = {x;, x;}and E; = {(x;, x;)}. For each clause ¢; =
(1) Y2j5 ¥3j), 1€t V) = Haj, azj. a3} B = {(a1j, azj), (a1, asj), (az;, az;)},
and E;’ = {(a1j, 1), (azj, y2;), (azj, y3;)}. Now, define G=(V, E) where

V= (OV,) U LmJV]f and E = (OE,) U LmJE;. U LmJE;f
i=1 j=1 i=1 j=1 j=1

The graph G has a vertex cover of size less than or equal to n + 2m if and only if
C is satisfiable (Garey and Johnson, 1979). The truth assignment t is transformed
to a vertex cover V' of G. If #(x;) = 1(0), then x;(x;) € V'. Suppose c; is a
clause satisfied by ¢. Then one of the literals y;; is true, which implies that the edge
(a;j, yij) is covered, since y; € V'. Now, let the vertices a,; € V), a,; # aij,
be in V'. If ¢, is a clause not satisfied by 7, then let each vertex in V, be in V'.
It is straightforward to show that V' is a vertex cover of G, withn +2(m —) +
3l = n + 2m + [vertices. The transformation of t to the vertex cover V' is done
in polynomial time in the length of the MAX-3-SAT(GV, |) instances. Therefore,

92 DEREK E. ARMSTRONG AND SHELDON H. JACOBSON

MAX-3-SAT(GV, I) polynomially transforms to Vertex Cover(GV, 1), hence by
Theorem 2, Vertex Cover(GV, I) is NP-complete. O

Theorem 6 implies that given a graph and a Hamiltonian path, the problem of
determining if the graph has a Hamiltonian Circuit is still NP-complete. Papadi-
mitriou and Steilglitz (1977) establish the same result. This result here is ob-
tained by an alternative and independent proof. First, Hamiltonian Circuit(GV, I) is
formally stated.

Hamiltonian Circuit(GV, I). Let G = (V, E) be a graph, where |V| = n, and

{v1, v2, ..., v,} is an ordering of the vertices such that (v;,1, v; + 1) € E for all
i =12,...,n—1.Does there exist an ordering of the vertices {u1, us, ... , u,}
such that (u;, u;41) e Eforalli =1,2,... ,n—1and (u,, u;) € E?

Theorem 6 shows that Hamiltonian Circuit(GV, 1) is NP-complete by a slight
modification of the polynomial transformation used to prove that Hamiltonian cir-
cuit is NP-complete (Garey and Johnson 1979).

THEOREM 6. Hamiltonian Circuit(GV, |) is NP-complete for all / > 1.

Proof. Let/ > 1. First, it is straightforward to see that Hamiltonian Circuit(GV,
[) is in NP. The proof follows by showing that MAX-3-SAT(GV, I) polynomi-
ally transforms to Hamiltonian Circuit(GV, I). Let C = {c1,¢p,...,cn} be a
set of m clauses over a set X = {x;,x,,...,x,} of n Boolean variables and
t 1 X — {0, 1} be a truth assignment that satisfies all but / clauses; this defines
an instance of MAX-3-SAT(GV, I). As in the proof of Theorem 5, this instance of
MAX-3-SAT(GV,|) is transformed to an instance of Vertex Cover(GV, 1), where
the resulting instance of Vertex Cover(GV, 1) is denoted by graph G = (V, E)
with vertex cover V'. By the proof of Theorem 5, |V'| = n +2m + 1. Let K =
n+ 2m + 1. The instance of Vertex Cover(GV, I) can be transformed to an instance
of Hamiltonian Circuit(GV, I). To see this, for each edge e = (u,v) € E, let
V, ={[u,e,i],[v,e,i]:i=12,...,6}and

E, ={lu,e,il, [u,e,i +11), ([v,e,il,[v,e,i +1]):i =1,2,...,5}
U {([u, e, 3], [v, e, 1]), ([v, e, 3], [u, e, 1)), (u, e, 6], [v, e, 4]),
([v, e, 6], [u, e, 4])}

For each vertex v € V, let the edges incident to v be given by e, ey2ys - - - -,
eyldes (v, Where deg(v) denotes the degree of vertex v. Then for each vertex v € V,
let E; = {([v, eyi}, 6]), [v, eyivay, 1) 1 i = 1,2, ..., deg(v) — 1}. Foreach k > 1,
let Vi ={a;: i =1,2,... ,k} U (UeeV,) and Ex = (U.eeE,) U (UyevE,) UE],
where EZ = {(a;, [V, €y[1]» 1D, (a;, [v, €y[deg(v)]s 6)) :i = 1,2,... ,k,v € V}.
Lastly, let G, = (Vy, E;). From Garey and Johnson (1979), the graph G, has a
Hamiltonian Circuit if and only if G has a vertex cover of size less than or equal
to k. A graph G’ = (V’, E'), with path viv, ... vy 41 Can be constructed such
that G’ has a Hamiltonian Circuit if and only if G has a vertex cover with fewer

GLOBAL VERIFICATION FOR NP-HARD DISCRETE OPTIMIZATION PROBLEMS 93

than K — 1 4+ 1 vertices. Since G has a vertex cover of size K, the graph Gk has
a Hamiltonian circuit A = aivov3...v,a1. Define the graph G’ = (V', E') where
V' = Vg U {b1, by, ..., b} and B = Ex U {(bj,al-) i =1,2,... K, j =
1,2,...,1}. Then byayvvs ... v, is a path of length [V'| — [for graph G’. The
graph G’ = (V',E') and path biaivovs... v, define an instance of Hamiltonian
Circuit(GV,). Showing that G’ has a Hamiltonian circuit if and only if C is sat-
isfiable completes the proof. To that end, suppose that Ay = biujuy...u,bq
is a Hamiltonian circuit for graph G’. Since A, is a Hamiltonian circuit, then
up = a; and u, = a; forsomei # j. LetGg_y = ({a, : t =1,2,... , K —
1Lt # j}U (UeeeVl) . (UeeeEL) U (UyevE,) U E% ;) be a graph, where E_; =
{(ar, [v, ey1), 1D), (ay, [V, €yfdegy)» 6)) © ¢t = 1,2,... , K —1,t # j,v € V}.
Since the edge (u1, u,-1) € E}_,, then the graph G’ _, has a Hamiltonian circuit
Ay = uquy...u,_qui. The graph G _; is isomorphic to the graph Gg_1, which
implies that G _; has a Hamiltonian circuit. Writing A, as b, ... by, this process
can be repeated to show that Gx_, has a Hamiltonian circuit. Continuing this
process, it follows that Gx_; has a Hamiltonian circuit. Therefore, the graph G
has a vertex cover of size less than or equal to K — / = n + 2m, which also
implies that C is satisfiable. Now, suppose that C is satisfiable, then the graph
G has a vertex cover of size less than or equal to K — . This implies that the
graph Gk has a Hamiltonian circuit A, = ajuous...u,_1a;. Since the edges
{(bj,aj) : i =1,2,... ,K,j =1,2,...,1}are in E, it is straightforward to
see that G’ has a Hamiltonian circuit. It then follows that Vertex Cover(GV, I)
polynomially transforms to Hamiltonian Circuit(GV, I). Lastly, from Theorem 5,
this implies that Hamiltonian Circuit(GV, I) is NP-complete. O

The global verification problem of TSP, TSP(GV, |) for [> 1, can be shown to
be NP-complete. First, TSP(GV,I) is formally stated.

TSP(GV, I): Given a collection of n cities {x1, x, ... , x,}, distances d(x;, x;) for
each pair of distinct cities x; and x;, and a permutation of the cities z1z, . . . z, with
length §; does there exist a permutation of the n cities, y;y, ... y,, with length less
than or equal to § — 1.

TSP(GV, I) is NP-complete since the Hamiltonian Circuit problem discussed in
Theorem 6 can be transformed to a corresponding instance of TSP(GV, I), where
d(x,y) =1(2) ifand only if (x, y) € (¢)E.

COROLLARY 1. TSP(GV, 1) is NP-complete.

The results in this section show that for several NP-hard optimization problems,
global verification is NP-complete. Furthermore, in many cases, the proofs that
global verification is NP-complete can be obtained by simple adaptations to the
proofs used to show that the decision problems themselves are NP-complete. In
particular, MAX-3-SAT(GV, 1) is shown to be NP-complete by polynomially trans-
forming MAX-SAT(GV,) to MAX-3-SAT(GV, 1), similar to how SAT is polyno-

94 DEREK E. ARMSTRONG AND SHELDON H. JACOBSON

mially transformed to 3-SAT. In transforming an instance of MAX-SAT(GV|I) to
an instance of MAX-3-SAT(GV,1), a set of clauses C, a set of Boolean variables X,
and a truth assignment ¢ : X — {0, 1} that satisfies all but | clauses (which defines
an instance of MAX-SAT(GV, I)) is polynomially transformed to an instance of
MAX-3-SAT(GV,I). First, the set of clauses C and Boolean variables X are trans-
formed to an instance of 3-SAT, given by C’ and X’. Then the truth assignment ¢
is transformed to a truth assignment ' : X’ — {0, 1} that satisfies all but | clauses
of C'. Therefore, the proof that MAX-3-SAT(GV,I) is NP-complete is obtained by
modifications to the proof used to show that 3-SAT is NP-complete. This same
idea is then used to show that global verification is NP-complete for other NP-hard
discrete optimization problems.

4, Conclusion and Directions of Future Research

The results in this paper support the conjecture that global verification is NP-
complete for all NP-hard optimization problems. Note that if it can be shown that
global verification is NP-complete for all NP-hard discrete optimization problems,
then the existence of any one NP-hard problem in PGS implies that P = NP. One
goal of this research is to show that the existence of a NP-hard problem in PGS
implies P = NP. This would be a natural extension to the result in Jacobson and
Solow (1993) that states that if there exists a PGS problem that is NP-hard, then
NP = co-NP.

This paper shows that global verification is NP-complete for several NP-hard
discrete optimization problems (MAX-SAT, MAX-k-SAT (for k > 2), Vertex Cover,
TSP). These results may suggest a way to prove that, in fact, global verification is
NP-complete for other NP-hard discrete optimization problems. Global verification
in polynomial time may be one indicator that a discrete optimization problem is not
hard. This research examines if global verification in polynomial time is sufficient
for a discrete optimization problem to be solved in polynomial time. Note that
there do exist discrete optimization problems in which global verification can be
completed in polynomial time but it is not known if the problem itself can be solved
in polynomial time. For example, a discrete optimization problem associated with
the linear complementarity problem (LCP) with P-matrices has been shown to be
in PGS, though it is not known whether this problem is NP-hard or solvable in
polynomial time (Jacobson and Solow, 1993). LCP with P-matrices is specified as
follows:

Given an n x n matrix M with positive principal minors and an n-vector ¢, find
two n-vectors w and z such that w = Mz 4+ ¢, w,z > 0,and w”z = 0.

The associated discrete optimization problem that is in PGS (Jacobson and Solow,
1993) is to minimize 6 such that e = w — Mz — g, where ¢ is an n-vector of
all ones. The solutions to this discrete optimization problem are given by the basic
feasible solutions to w = Mz + g + fe. The three polynomial algorithms A,
Bp, and Cp that are needed to show that this problem is in PGS are contained in

GLOBAL VERIFICATION FOR NP-HARD DISCRETE OPTIMIZATION PROBLEMS 95

Lemke’s algorithm (1965). Therefore, for this optimization version of LCP with
P-matrices, global verification can be done in polynomial time, though it is not
known if the problem itself can be solved in polynomial time. The work presented
here and in Jacobson and Solow (1993) suggest that global verification for this
problem is unlikely to be NP-complete.

Note that the notion of NP-hardness for LCP with P-matrices should not be
taken from the perspective of standard complexity theory (Garey and Johnson,
1979). In Garey and Johnson (1979), polynomially solvable search problems are
required to have polynomial time recognizable instances. Therefore, from standard
complexity theory, LCP with P-matrices would be NP-hard due to the NP-hardness
of recognizing P-matrices. In this paper, a problem IT is NP-hard if there exists an
NP-complete problem IT’ such that IT’ Turing reduces to IT. That is, a problem IT is
NP-hard if an (all) NP-complete problem(s) IT’ can be solved by an algorithm T that
uses a hypothetical subroutine Sfor solving IT such that, if Sis a polynomial time
algorithm for IT, then T is a polynomial time algorithm for IT" (Garey and Johnson,
1979). A call to the subroutine Sby algorithm T implies that the subroutine Sis
given acceptable input (instance of IT); the subroutine Sis not assumed to recognize
a valid instance in polynomial time (Megiddo, 1988).

The results in this paper also imply that the existence of one NP-hard problem
in PGS implies that other NP-hard problems are in PGS. Since it was proven that
MAX-SAT(GV, I) is NP-complete, if MAX-SAT is in PGS, then P = NP and all
problems that are NP-easy can be solved in polynomial time.

One future direction of this research is to extend these results to show that
global verification is NP-complete for all NP-hard discrete optimization problems.
Obtaining this result appears challenging, so a preliminary research goal is to find
large sets of NP-hard discrete optimization problems such that global verification
is NP-complete for every problem in that set. Also, it would be useful to find prop-
erties of problems that imply that their global verification problem is NP-complete.
Answers to these issues and questions may lead to a better understanding of the Py
versus PGS question.

Acknowledgements

The authors wish to thank the Associate Editor and two anonymous referees for
their feedback on the paper.

This research is supported in part by the National Science Foundation (DMI-
9907980) and the Air Force Office of Scientific Research (F49620-01-1-0007).

References

Aspvall, B., Plass, M.F. and Tarjan, R.E. (1979), A linear-time algorithm for testing the truth of
certain quantified Boolean formulas, Information Processing Letters, 8(3), 121-123.

96 DEREK E. ARMSTRONG AND SHELDON H. JACOBSON

Cook, S.A., (1971), The complexity of theorem proving procedures, Proceedings of the Third Annual
ACM Symposium on Theory of Computing, Association for Computing Machinery, New York,
pp. 151-158.

Even, S., Itai, A. and Shamir, A. (1976) On the complexity of timetable and multicommodity flow
problems, SAM Journal on Computing 5, 691-703.

Fischer, S., Hemaspaandra, L. and Torenvliet, L. (1997), Witness-isomorphic reductions and local
search. In: Sorbi, A. (ed), Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, New
York, NY, pp. 207-223.

Garey, M.R. and Johnson, D.S. (1979), Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company, New York, NY.

Garey, M.R., Johnson, D.S. and Stockmeyer, L. (1976), Some simplified NP-complete graph
problems, Theoretical Computer Science 1, 237-267.

Grotschel, M. and Lovasz, L. (1995), Combinatorial Optimization. In: R. Graham, M. Grotschel, L.
Lovasz (eds), Handbook of Combinatorics, vol. Il (North-Holland, Amsterdam), pp. 1541-1597.

Jacobson, S.H. and Solow, D. (1993), The effectiveness of finite improvement algorithms for finding
global optima, Methods and Models of Operations Research, 37, 257-272.

Johnson, D.S., Papadimitriou, C.H. and Yannakakis, M. (1988), How easy is local search? Journal
of Computer and System Sciences 37, 79-100.

Lemke, C.E. (1965), Bimatrix equilibrium points and mathematical programming, Management
Science 11, 442-455.

Megiddo, N. (1988), A note on the complexity of P-matrix LCP and computing an equilibrium,
Research Report RJ 6439, IBM Almaden Research Center, San Jose, CA.

Papadimitriou, C.H. and Steilglitz, K. (1977), On the complexity of local search for the traveling
salesman problem, SSAM Journal on Computing 6, 76-83.

Schulz, A.S. and Weismantel, R. (1999), An oracle-polynomial time augmentation algorithm for
integer programming, Proceedings of the 10/ Annual ACM-SIAM Symposium on Discrete
Algorithms, Baltimore, MD, pp. 967-968.

Schulz, A.S., Weismantel, R. and Ziegler, G.M. (1995), 0/1-Integer programming: optimization and
augmentation are equivalent. In: P. Spirakis, (ed), Lecture Notes in Computer Science, no. 979,
Springer, Berlin, pp. 473-483.

